In-Pixel Computing for the Extreme-Edge

Ajey Jacob

Director | Application Specific Intelligent Computing Lab (ASIC Lab)

Ajey@isi.edu

Information Sciences Institute (www.isi.edu)

University of Southern California (www.usc.edu)

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Distribution Statement A – Approved for public release. Distribution unlimited.

State of the art vision sensors are SWAP constrained

The segregation of 'Sensing', 'Memory' and 'Compute' creates Energy, Throughput, and Bandwidth Bottleneck.

In-Pixel Technology efficiently Balances Compute Energy, Data Movement, and Accuracy

Massively parallel in-pixel Analog Multibit Convolution Operation

Hardware maps all the computational aspects of the first few layers of CNN inside sensor, minimizing data transfer for Neuron-Ready Processing

In-Pixel Compute Analogy with Bio-vision

In-PIXEL Processing is a Bio inspired solutions to address the sensing-computing bottleneck

Distribution Statement A – Approved for public release. Distribution unlimited.

Representative illustration of a stacked in-pixel hardware design

Tile with weights for each Pixel

Multiple memory devices and periphery circuits occupies each tile

CMOS Image Sensor IC

(1) Micro lens, (2) Light shield, (3) Backside illuminated CMOS Image Sensor (Bi-CIS), (4) Pixel isolation (5) Backend of line of the Bi-CIS, (6) in-Pixel Memory tile

3D Heterogeneous Integration: Achieving high-density pixels with State-of-the-art performance through high volume manufacturing

In-Pixel Experimental Demonstration

Baseline Performance

In-Pixel Accelerated Global Tracking Transformers

21.29x Improvement in Energy Delay Product over Baseline

Distribution Statement A – Approved for public release. Distribution unlimited

In-Pixel Accelerated with 5% Noise

Only 0.1% mIDF1 score reduction during inference

Distribution Statement A – Approved for public release. Distribution unlimited

In-Pixel Intelligent Frame Skipping

13.3x Speedup with In-Pixel Intelligent Frame Skipping

Distribution Statement A – Approved for public release. Distribution unlimited

Baseline

Intelligen

Significant bandwidth reduction at SOTA accuracy

In-Pixel processing enables a wide range of SWaP constrained complex Machine Learning tasks at the Extreme-Edge

In-PIXELS Team Members

Frontend In-Pixel design

Backend Neural Network design

Dr. Ajey Jacob (PI)	Dr. Akhilesh Jaiswal (Co-PI)	Dr. Peter Beerel (Co-PI)	Dr. Wael Abd-Almageed (Significant Contributor)	Dr. Andrew Schmidt (Significant Contributor)
Hardware Demonstration	In-Pixel Circuit Architecture	NN Algorithm- Hardware Co-design	Backend Multi-object Detection and Tracking	FPGA Implementation and Demonstration

THANK YOU